Superlattice design for optimal thermoelectric generator performance
نویسندگان
چکیده
منابع مشابه
Design and analysis of a thermoelectric generator for a heavy-duty vehicle in real road test
Heavy duty vehicles have a great share on fossil fuel consumption and greenhouse gases in the world, while they waste two third of chemical energy of fuel. On the other hand, simplicity and long life of thermoelectric generators (TEGs) are considered more and more to convert thermal energy to electrical one. In this paper a TEG designed in the exhaust system of Renault Midlum 195 Dxi Engine. Th...
متن کاملDesign of Cascaded Oxide Thermoelectric Generator
This paper describes the design of twoand three-stage cascaded oxide thermoelectric generators (TEGs) for high-temperature heat recovery using reported data to optimize energy conversion efficiency. We used the general intermetallic compounds Bi2(Se,Te)3 and (Bi,Sb)2Te3 for the low-temperature stages and oxides of TiO1:1, La-doped SrTiO3, NaxCo2O4, and Al-doped ZnO for the higher-temperature st...
متن کاملThermoelectric properties of superlattice nanowires
We report here on a theoretical model for the electronic structure and transport properties of superlattice nanowires, considering their cylindrical wire boundary and multiple anisotropic carrier pockets. The thermoelectric properties of superlattice nanowires made of various lead salts ~PbS, PbSe, and PbTe! are investigated as a function of the segment length, wire diameter, crystal orientatio...
متن کاملElectrodeposition of Thermoelectric Superlattice Nanowires
There is a renewed interest in the field of thermoelectrics because of the remarkable efficiency improvement that can be achieved in nanostructured materials, for example, superlattice thin films and quantum dots. Theoretical calculations predict that further enhancement of the thermoelectric figure of merit can be achieved in superlattice nanowires (zero-dimensional) [5] rather than convention...
متن کاملThermoelectric Transport in a ZrN/ScN Superlattice
Metal/semiconductor superlattices have the potential for a high thermoelectric figure of merit. The thermopower of these structures can be enhanced by controlling the barrier height using high-energy electron filtering. In addition, phonon scattering at interfaces can reduce the lattice contribution to the thermal conductivity. In this paper, we present theoretical and experimental studies of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics D: Applied Physics
سال: 2018
ISSN: 0022-3727,1361-6463
DOI: 10.1088/1361-6463/aab8d5